Which steps can be used to verify that tan(w + Pi) = tan(w)? Rewrite tan(w + Pi) as tan(w) + tan(Pi). Then simplify the expression using tan(Pi) = 1. Rewrite tan(w + Pi) as tan(w) + tan(Pi). Then simplify the expression using tan(Pi) = 0. Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 1. Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.

Respuesta :

Answer:

Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0

Step-by-step explanation:

According to tangent sub identity

Tan(A+B) = TanA+TanB/1-tanAtanB

Applying this in question

Tan(w+Pi) = tan(w)+tan(pi)/1-tan(w)tan(pi)

According to trig identity, tan(pi) = 0

Substitute

Tan(w+Pi) = tan(w)+0/1-tan(w)(0)

Tan(w+Pi) = tan(w)/1

Tan(w+Pi) = tan(w) (proved!)

Hence the correct option is

Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0

The given expression can be prove by using tangent sub-identity. In the solution we will use [tex]\tan (A+B)[/tex] sub-identity.

The correct option is Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.

Given:

The given expression is as follows,

[tex]\tan(w+\pi)=\tan(w)[/tex]

Write the tangent sub-identity.

[tex]\tan(A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}[/tex]

Now replace [tex]A[/tex] with [tex]w[/tex] and [tex]B[/tex] with [tex]\pi[/tex].

[tex]\tan(w+\pi)=\dfrac{\tan w+\tan \pi}{1-\tan w\tan \pi}[/tex]

Substitute 0 for  [tex]\tan \pi[/tex].

[tex]\tan(w+\pi)=\dfrac{\tan w+0}{1-\tan w\times 0}\\\tan(w+\pi)=\tan w[/tex]

Thus, the correct option is Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.

Learn more about tangent sub-identity here:

https://brainly.com/question/1561928