Respuesta :
Answer:
Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0
Step-by-step explanation:
According to tangent sub identity
Tan(A+B) = TanA+TanB/1-tanAtanB
Applying this in question
Tan(w+Pi) = tan(w)+tan(pi)/1-tan(w)tan(pi)
According to trig identity, tan(pi) = 0
Substitute
Tan(w+Pi) = tan(w)+0/1-tan(w)(0)
Tan(w+Pi) = tan(w)/1
Tan(w+Pi) = tan(w) (proved!)
Hence the correct option is
Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0
The given expression can be prove by using tangent sub-identity. In the solution we will use [tex]\tan (A+B)[/tex] sub-identity.
The correct option is Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.
Given:
The given expression is as follows,
[tex]\tan(w+\pi)=\tan(w)[/tex]
Write the tangent sub-identity.
[tex]\tan(A+B)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}[/tex]
Now replace [tex]A[/tex] with [tex]w[/tex] and [tex]B[/tex] with [tex]\pi[/tex].
[tex]\tan(w+\pi)=\dfrac{\tan w+\tan \pi}{1-\tan w\tan \pi}[/tex]
Substitute 0 for [tex]\tan \pi[/tex].
[tex]\tan(w+\pi)=\dfrac{\tan w+0}{1-\tan w\times 0}\\\tan(w+\pi)=\tan w[/tex]
Thus, the correct option is Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.
Learn more about tangent sub-identity here:
https://brainly.com/question/1561928