Respuesta :

Answer:

y  =  [tex]\frac{2}{3}[/tex]x

Explanation:

Given parameters:

  Coordinates  = (-6, -4)

   Equation of a the line; 3y = 2x - 6

Unknown:

Equation of the line parallel to this line  = ?

Solution:

The equation of any straight line is expressed as;

              y  = mx  + c

y and x are the coordinate

 m is the slope  

c is the intercept of the y - axis

Now from the equation, let us find the slope;

   3y = 2x - 6

     y  = [tex]\frac{2}{3} x[/tex] - [tex]\frac{6}{3}[/tex]

    y  =  [tex]\frac{2}{3} x[/tex] - 2

The slope is  [tex]\frac{2}{3}[/tex]

Parallel lines are lines that never meets. Therefore they have the same slope;

  the slope of the new line is  [tex]\frac{2}{3}[/tex]

Now,

  for the new line, we need to find the intercept;

        since y = mx + c,

     y  = -4 and x = -6;

           -4 =  [tex]\frac{2}{3}[/tex] x (-6) + c

          - 4  = -4 + c

           c= 0

The equation of the new line is;

            y  =  [tex]\frac{2}{3}[/tex]x