Respuesta :

Answer:

length/distance = 10 units

Step-by-step explanation:

Use the distance formula for both points / length / magnitude, d = √((x2-x1)^2+(y2-y1)^2).

Given endpoints (-3,8) [(x1,y1)], and (7,8) [(x2,y2)], plug in the corresponding y, and x values of both coordinates, and simplify.

√((8-8)^2+(7-(-3))^2) = √(0^2+10^2) = √100 = 10

*This may be in units if the unit used is unspecified.*

_______________________________

Also since the y values of both coordinates are the same, you can just subtract the x values in the coordinates, and take the absolute value since distance/length cannot be negative.

Step-by-step explanation:

[tex]|AB | = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} [/tex]

[tex] = \sqrt{( - 3 - 7)^{2} + (8 - 8)^{2}} \\ = \sqrt{100 + 0} = 10[/tex]