Answer:
[tex]A = \left[\begin{array}{ccc}-3&3&2\\-25&-13&0\end{array}\right][/tex]
Step-by-step explanation:
Given the matrix
[tex]A = \left[\begin{array}{ccc}-3&3&2\\8&-1&3\end{array}\right] \\R1 = -3, 5, 2\\R2 = 8, -1, 3\\\\[/tex]
Before we can get the resulting matrix after the elementary operation, we need to get the new second row using the formula −2R2+3R1?
when R1= -3, R2 = 8
−2R2+3R1? = −2(8)+3(-3)
−2(8)+3(-3) = -16-9
−2(8)+3(-3) = -25
R1= 5, R2 = -1
−2R2+3R1? = −2(-1)+3(5)
−2(-1)+3(5) = 2-15
−2(-1)+3(5) = -13
when R1= 2, R2 = 3
−2R2+3R1? = −2(3)+3(2)
−2(3)+3(2) = -6-6
−2(3)+3(2) = 0
Hence the new R2 are -25, -13, 0
The resulting matrix will be:
[tex]A = \left[\begin{array}{ccc}-3&3&2\\-25&-13&0\end{array}\right][/tex]