Choose a justification for each step in the derivation of the sine difference identity.

The missing reasons are Cofunction identity, Cosine difference identity, Cofunction identity, Cosine function is even and sine function is odd respectively.
Given:
The given expression is [tex]\sin (x-y)[/tex].
To find:
The justification for each step.
Explanation:
Cofunction identities:
[tex]\sin\left(\dfrac{\pi}{2}-x\right)=\cos x[/tex]
[tex]\cos\left(\dfrac{\pi}{2}-x\right)=\sin x[/tex]
Cosine difference identity:
[tex]\cos(x-y)=\cos x\cos y+\sin x\sin y[/tex]
Cosine function is even, so [tex]\cos(-x)=\cos x[/tex].
Sine function is odd, so [tex]\sin(-x)=-\sin x[/tex].
We have,
[tex]\sin (x-y)[/tex]
[tex]=\cos\left|\dfrac{\pi}{2}-(x-y)\right|[/tex] Step 1: Cofunction identity
[tex]=\cos\left|\dfrac{\pi}{2}-x+y\right|[/tex] Step 2: Distributive property
[tex]=\cos\left|\left(\dfrac{\pi}{2}-x\right)+y\right|[/tex] Step 3: Associative property
[tex]=\cos\left|\left(\dfrac{\pi}{2}-x\right)-(-y)\right|[/tex] Step 4: Factoring out
[tex]=\cos\left(\dfrac{\pi}{2}-x\right)\cos(-y)+\sin\left(\dfrac{\pi}{2}-x\right)\sin(-y)[/tex] Step 5: Cosine difference identity
[tex]=\sin(x)\cos(-y)+\cos(x)\sin(-y)[/tex] Step 6: Cofunction identity
[tex]=\sin(x)\cos(y)-\cos(x)\sin(y)[/tex] Step 7: Cosine function is even, sine function is odd
Therefore, the missing reasons are Cofunction identity, Cosine difference identity, Cofunction identity, Cosine function is even, sine function is odd respectively.
Learn more:
https://brainly.com/question/20919234