Respuesta :

Answer:

[tex]y-1/2=2(x+7/2)^2[/tex]

Step-by-step explanation:

Equation of the Quadratic Function

The vertex form of the quadratic function has the following equation:

[tex]y-k=a(x-h)^2[/tex]

Where (h, k) is the vertex of the parabola that results when plotting the function, and a is a coefficient different from zero.

The given function is:

[tex]y=(x+3)^2+(x+4)^2[/tex]

Expanding the squares:

[tex]y=x^2+6x+9+x^2+8x+16[/tex]

Simplifying:

[tex]y=2x^2+14x+25[/tex]

Factoring 2 from the first two terms:

[tex]y=2(x^2+7x)+25[/tex]

The expression in parentheses must be completed to form the square of a binomial:

[tex]y=2(x^2+7x+49/4-49/4)+25[/tex]

Isolating the square of the binomial:

[tex]y=2(x^2+7x+49/4)-49/2+25[/tex]

Operating and Factoring:

[tex]y=2(x+7/2)^2+1/2[/tex]

Rearranging:

[tex]\boxed{y-1/2=2(x+7/2)^2}[/tex]

Comparing with the vertex form:

a=2, h=-7/2, k=1/2