Answer:
a. [tex]\frac{5x}{(x+3)}[/tex]
b. [tex]\frac{5x}{(x+3)}[/tex]
Step-by-step explanation:
Given that:
a. [tex](\frac{25x^{2} }{2x+6})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex]\frac{50x^{2} }{5x(2x+6)}[/tex]
= [tex]\frac{50x^{2} }{10x^{2} +30x}[/tex]
= [tex]\frac{(50x)x}{(10x+30)x}[/tex]
= [tex]\frac{50x}{(10x+30)}[/tex]
= [tex]\frac{5x}{(x+3)}[/tex]
b. [tex](\frac{25x^{2} }{2(x+3)})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex]\frac{50x^{2} }{10x(x+3)}[/tex]
= [tex]\frac{5x}{(x+3)}[/tex]
Therefore,
[tex](\frac{25x^{2} }{2x+6})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex](\frac{25x^{2} }{2(x+3)})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex]\frac{5x}{(x+3)}[/tex]