The data set below represents the total number of home runs that a baseball player hit each season for 11 seasons of play. What is the interquartile range of the data? 14, 22, 19, 21, 30, 32, 25, 15, 16, 27, 28 12 16 22 28

Respuesta :

Answer:

The interquartile range of the data is 12

Step-by-step explanation:

Data : 14, 22, 19, 21, 30, 32, 25, 15, 16, 27, 28 12 16 22 28

Data in ascending order : 12 ,14 ,15 ,16 ,16 ,19 ,21 ,22 ,22 ,25 ,27 ,28 ,28 ,30 ,32

Lower quartile :12 ,14 ,15 ,16 ,16 ,19 ,21

Q1 is the median of lower quartile

n = 7

Median =[tex]\frac{n+1}{2} \text{th term}=\frac{7+1}{2}=4 \text{th term}[/tex]=16

Upper quartile :22 ,25 ,27 ,28 ,28 ,30 ,32

Q3 is the median of upper quartile

n = 7

Median =[tex]\frac{n+1}{2} \text{th term}=\frac{7+1}{2}=4 \text{th term}[/tex]=28

IQR = Q3-Q1=28-16= 12

Hence the interquartile range of the data is 12

Answer:

A: 12

Step-by-step explanation:

edg2020

Ver imagen kaitlinsierras