Answer:
The resultant vector [tex]\vec R = \vec A+\vec B[/tex] is given by [tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex].
Explanation:
Let [tex]\vec A = 6\cdot (\cos 30^{\circ}\,\hat{i}+\sin 30^{\circ}\,\hat{j})[/tex] and [tex]\vec B = 4\cdot (-\sin 30^{\circ}\,\hat{i}-\cos 30^{\circ}\,\hat{j})[/tex], both measured in meters. The resultant vector [tex]\vec R[/tex] is calculated by sum of components. That is:
[tex]\vec R = \vec A+\vec B[/tex] (Eq. 1)
[tex]\vec R = 6\cdot (\cos 30^{\circ}\,\hat{i}+\sin 30^{\circ}\,\hat{j})+4\cdot (-\sin 30^{\circ}\,\hat{i}-\cos 30^{\circ}\,\hat{j})[/tex]
[tex]\vec R = (6\cdot \cos 30^{\circ}-4\cdot \sin 30^{\circ})\,\hat{i}+(6\cdot \sin 30^{\circ}-4\cdot \cos 30^{\circ})\,\hat{j}[/tex]
[tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex]
The resultant vector [tex]\vec R = \vec A+\vec B[/tex] is given by [tex]\vec R = 3.196\,\hat{i}-0.464\,\hat{j}\,\,\,[m][/tex].