The coordinates of point T are (0,3). The midpoint or ST is (1,4). Find the coordinates of point S.


The other endpoint is _

(type an ordered pair)

Respuesta :

Answer:

[tex]S = (2,5)[/tex]

Step-by-step explanation:

Given

[tex]T = (0,3)[/tex]

[tex]Midpoint (M) =(1,4)[/tex]

Required

Determine the other end point (S)

Midpoint is calculated as thus:

[tex]M(x,y) = (\frac{S_x + T_x}{2},\frac{S_y + T_y}{2})[/tex]

This gives:

[tex](1,4) = (\frac{S_x + 0}{2},\frac{S_y + 3}{2})[/tex]

[tex](1,4) = (\frac{S_x}{2},\frac{S_y + 3}{2})[/tex]

Multiply through by 2

[tex]2 * (1,4) = (\frac{S_x}{2},\frac{S_y + 3}{2}) * 2[/tex]

[tex](2,8) = (S_x,S_y + 3)[/tex]

By comparison:

[tex]S_x = 2[/tex]

[tex]S_y + 3 = 8[/tex]

[tex]S_y = 8 - 3[/tex]

[tex]S_y = 5[/tex]

Hence:

The coordinates of S is

[tex]S = (2,5)[/tex]