Answer:
[tex]L = (-10,10)[/tex]
Step-by-step explanation:
Given
[tex]K = (2,-6)[/tex]
[tex]T = (-4,2)[/tex]
Required
Determine the coordinates of L
Since T is the midpoint of K and L, we make use of:
[tex]T_x = \frac{K_x + L_x}{2}[/tex]
and
[tex]T_y = \frac{K_y + L_y}{2}[/tex]
Solving for [tex]L_x[/tex]
[tex]T_x = \frac{K_x + L_x}{2}[/tex]
[tex]-4 = \frac{2 + L_x}{2}[/tex]
Multiply through by 2
[tex]-8 = 2 + L_x[/tex]
[tex]L_x = -8 - 2[/tex]
[tex]L_x = -10[/tex]
Solving for [tex]L_y[/tex]
[tex]T_y = \frac{K_y + L_y}{2}[/tex]
[tex]2 = \frac{-6+L_y}{2}[/tex]
Multiply through by 2
[tex]4 = -6 + L_y[/tex]
[tex]L_y = 4 + 6[/tex]
[tex]L_y = 10[/tex]
Hence: The coordinates of L is:
[tex]L = (-10,10)[/tex]