T is the midpoint of KL. K has coordinates (2,−6), and T has coordinates (−4,2). Identify the coordinates of L.

Respuesta :

Answer:

[tex]L = (-10,10)[/tex]

Step-by-step explanation:

Given

[tex]K = (2,-6)[/tex]

[tex]T = (-4,2)[/tex]

Required

Determine the coordinates of L

Since T is the midpoint of K and L, we make use of:

[tex]T_x = \frac{K_x + L_x}{2}[/tex]

and

[tex]T_y = \frac{K_y + L_y}{2}[/tex]

Solving for [tex]L_x[/tex]

[tex]T_x = \frac{K_x + L_x}{2}[/tex]

[tex]-4 = \frac{2 + L_x}{2}[/tex]

Multiply through by 2

[tex]-8 = 2 + L_x[/tex]

[tex]L_x = -8 - 2[/tex]

[tex]L_x = -10[/tex]

Solving for [tex]L_y[/tex]

[tex]T_y = \frac{K_y + L_y}{2}[/tex]

[tex]2 = \frac{-6+L_y}{2}[/tex]

Multiply through by 2

[tex]4 = -6 + L_y[/tex]

[tex]L_y = 4 + 6[/tex]

[tex]L_y = 10[/tex]

Hence: The coordinates of L is:

[tex]L = (-10,10)[/tex]