Respuesta :

Answer:

[tex]JK = 2[/tex]

Step-by-step explanation:

Given:

[tex]JK = 2x[/tex]

[tex]IJ = 5x[/tex]

[tex]IK = x + 6[/tex]

Required

Solve for JK.

Since J is on IK, we have:

[tex]IK = IJ + JK[/tex]

[tex]x + 6 = 5x + 2x[/tex]

[tex]x + 6 = 7x[/tex]

Collect Like Terms

[tex]7x - x = 6[/tex]

[tex]6x = 6[/tex]

Solve for x

[tex]x = 6/6[/tex]

[tex]x = 1[/tex]

Substitute 1 for x in [tex]JK = 2x[/tex]

[tex]JK = 2 * 1[/tex]

[tex]JK = 2[/tex]