If such a particle is moving, with respect to the laboratory, with a speed of 0.950 c , what average lifetime is measured in the laboratory?

Respuesta :

Complete Question

The positive [tex]muon (^+)[/tex], an unstable particle, lives on average [tex]2.20 * 10^{-6}\ s[/tex]  (measured in its own frame of reference) before decaying.

If such a particle is moving, with respect to the laboratory, with a speed of 0.950 c , what average lifetime is measured in the laboratory?

Answer:

The value is  [tex]\Delat  t  =  7.046 *10^{-6} \  s[/tex]

Explanation:

From the question we are told that

   The the average live time of  [tex]muon (^+)[/tex] is  [tex]\Delta t_o  =  2.20 *10^{-6} \  s[/tex]

    The speed of of [tex]muon (^+)[/tex]  in the laboratory is  [tex]v  =  0.950 c[/tex]

   

Generally the average life time of the positive [tex]muon (^+)[/tex] measured in the laboratory  is mathematically represented as

 [tex]\Delat  t  =  \frac{\Delta t_o }{ \sqrt{1 - \frac{v^2}{c^2} } }[/tex]

 [tex]\Delat  t  =  \frac{2.20 *10^{-6}}{ \sqrt{1 - \frac{(0.950 c)^2}{c^2} } }[/tex]

   [tex]\Delat  t  =  \frac{2.20 *10^{-6}}{ \sqrt{1 - \frac{0.9025 c^2}{c^2} } }[/tex]  

   [tex]\Delat  t  =  \frac{2.20 *10^{-6}}{ \sqrt{1 - 0.9025  } }[/tex]

   [tex]\Delat  t  =  \frac{2.20 *10^{-6}}{ \sqrt{ 0.0975  } }[/tex]

     [tex]\Delat  t  =  7.046 *10^{-6} \  s[/tex]