Respuesta :
Answer:
The final speed of the block moving at the instant the spring has been compressed is approximately 3.674 meters per second.
Explanation:
The spring constant is 2000 newtons per meter. Let consider the spring-block system, from Principle of Energy Conservation we can represent it by the following model:
[tex]U_{k,1}+K_{1} = U_{k,2}+K_{2}[/tex]
[tex]K_{2} = K_{1}+(U_{k,1}-U_{k,2})[/tex] (Eq. 1)
Where:
[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Initial and final kinetic energies of the block, measured in joules.
[tex]U_{k,1}[/tex], [tex]U_{k,2}[/tex] - Initial and final elastic potential energy, measured in joules.
And we expand the equation above by definitions of elastic potential energy and kinetic energy:
[tex]\frac{1}{2}\cdot m \cdot v_{2}^{2} = \frac{1}{2}\cdot m\cdot v_{1}^{2} + \frac{1}{2}\cdot k\cdot (x_{1}^{2}-x_{2}^{2})[/tex]
[tex]v_{2} = \sqrt{v_{1}^{2}+\frac{k}{m}\cdot (x_{1}^{2}-x_{2}^{2}) }[/tex] (Eq. 1b)
Where:
[tex]m[/tex] - Mass of the block, measured in kilograms.
[tex]k[/tex] - Spring constant, measured in newtons per meter.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Initial and final velocities of the block, measured in meters per second.
[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final positions of spring, measured in meters.
If we know that [tex]v_{1} = 6\,\frac{m}{s}[/tex], [tex]k = 2000\,\frac{N}{m}[/tex], [tex]m = 2\,kg[/tex], [tex]x_{1} = 0\,m[/tex] and [tex]x_{2} = 0.15\,m[/tex], the final speed of the block moving at the instant the spring has been compressed is:
[tex]v_{2} = \sqrt{\left(6\,\frac{m}{s} \right)^{2}+\left(\frac{2000\,\frac{N}{m} }{2\,kg} \right)\cdot [(0\,m)^{2}-(0.15\,m)^{2}]}[/tex]
[tex]v_{2}\approx 3.674\,\frac{m}{s}[/tex]
The final speed of the block moving at the instant the spring has been compressed is approximately 3.674 meters per second.
