Answer:
[tex]KE = 5.01 \times 10^{-13}Joules[/tex]
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion. It is expressed as;
[tex]KE = \frac{1}{2}mv^2\\[/tex] where:
m is the mass of proton
v is the speed
Substitute:
[tex]KE = \frac{1}{2}(1.67\times 10 ^{-27})(6.0\times10^7)^2\\\\KE = \frac{1}{2}(1.67\times 10 ^{-27})(6.0\times10^{14})\\\\\\KE = \frac{1}{2}(1.67\times 6.0 \times 10 ^{-27}\times10^{14})\\\\KE = \frac{1}{2}(1.67\times 6.0 \times 10 ^{-27+14})\\\\KE = 3 \times 1.67 \times 10^{-13}\\\\KE = 5.01 \times 10^{-13}Joules[/tex]
Hence the kinetic energy of a proton is [tex]5.01 \times 10^{-13}Joules[/tex]