The natural frequency of a truck horn is 800 Hz. The driver of a car perceives the horn to be960 Hz. Given that both the truck and car are moving and have a relative speed of 61 m/s, whatare their individual speeds

Respuesta :

Answer:

The velocity of the truck is [tex]v_2 =  38 \ m/s [/tex]  

The velocity of the car is  [tex]  v_1 =  23 \  m/s [/tex]  

Explanation:

From the question we  are told that

   The natural  frequency of a truck horn is  [tex]f_t  =  800 \  Hz[/tex]

   The apparent frequency of the truck horn is   [tex]f_h  =  960 \  Hz[/tex]

   The relative speed is [tex]v_r  =  61 \  m/s[/tex]

Generally the relative speed when the truck and the car are moving towards each other is

     [tex]v_r  =  v_1  +  v_2[/tex]

Here [tex]v_2 \ and \  v_1[/tex] are the velocities of the truck and the car respectively

    [tex]61 =  v_1  +  v_2[/tex]

=>  [tex]v_2 =  61 - v_1[/tex]

Generally the apparent frequency is mathematically represented as

      [tex]f_h  =  \frac{ v  -  v_1 }{v - v_2} f_t[/tex]

Here v is the speed of sound with value [tex]v  =  343 \  m/s[/tex]

=>      [tex] \frac{f_h}{f_t}  =  \frac{ 343   -  v_1 }{343  - (61 - v_1)}[/tex]

=>       [tex] \frac{960}{800}  =  \frac{ 343   -  v_1 }{ 279 + v_1)}[/tex]

=>     [tex]  v_1 =  23 \  m/s [/tex]

From the above equation we have that

=>  [tex]v_2 =  61 - 23[/tex]    

=>  [tex]v_2 =  38 \ m/s [/tex]