Determine the end (final) value of n in a hydrogen atom transition, if the electron starts in n = 1 and the atom absorbs a photon of light with an energy of 2.044 × 10-18 J.

Respuesta :

Answer:

n2 = 4

Explanation:

By using the Rydberg equation and

Since n1 = 1, we have:

[tex]2.176 \times 10^{-18} \times (1 - \frac{1}{n_{2}^{2}}) = 2.044\times 10^{-18} \\n_{2}^{2} = 4[/tex]

therefore n2 is equal to 4

The final value of n in a hydrogen atom transition has been 2.

The Rydberg equation helps in the determination of the transition and the resulting wavelength.

The Rydberg equation for hydrogen atom transition can be given by:

[tex]\rm \dfrac{1}{\lambda}[/tex] = Rydberg constant( [tex]\rm \dfrac{1}{first\;energy\;level}\;-\;\dfrac{1}{final\;energy\;level}[/tex])

Energy = [tex]\rm \dfrac{1.2398}{\lambda}[/tex]

2.044 [tex]\rm \times\;10^-^1^8[/tex]  = [tex]\rm \dfrac{2.53\;\times\;10^-^1^8}{\lambda}[/tex]

2.53 [tex]\rm \times\;10^-^1^8[/tex] = 2.176 [tex]\rm \times\;10^-^1^8[/tex] [tex]\rm (\dfrac{1}{(1)^2}\;-\;\dfrac{1}{(n_2)^2} )[/tex]

n2 = 2

The final value of n in a hydrogen atom transition has been 2.

For more information about the hydrogen atom transition, refer to the link:

https://brainly.com/question/1594132