Respuesta :

Answer:

D. proves [tex]tan(w + \pi) = tanw[/tex]

Step-by-step explanation:

Given

[tex]tan(w + \pi) = tan(w)[/tex]

See attachment for complete question

Option D answers the question (See proof below).

Using tangent sum identity, we have:

[tex]tan(A + B) = \frac{tanA + tanB}{1 - tanAtanB}[/tex]

In this case:

[tex]A = w[/tex]

[tex]B = \pi[/tex]

So, we have:

[tex]tan(w + \pi) = \frac{tanw + tan \pi}{1 - tanw. tan \pi}[/tex]

Note that

[tex]tan\ pi = 0[/tex]

So:

[tex]tan(w + \pi) = \frac{tanw + tan \pi}{1 - tanw. tan \pi}[/tex]

[tex]tan(w + \pi) = \frac{tanw + 0}{1 - tanw * 0}[/tex]

[tex]tan(w + \pi) = \frac{tanw}{1}[/tex]

[tex]tan(w + \pi) = tanw[/tex]

Hence: Option D answers the question

Ver imagen MrRoyal

Answer:

D. Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0.

Step-by-step explanation:

test on edge

Ver imagen TheoFromWiiSports