Element X has two natural isotopes: X-6 (6.015 amu) and X-7 (7.016 amu). Calculate the atomic mass of element X given the abundance of X-7 is 92.5%

Respuesta :

Answer:

The atomic mass of element X is 6.941 amu.

Explanation:

The atomic mass of the element X is given by:

[tex] m_{X} = \%_{X-6}m_{X-6} + \%_{X-7}m_{X-7} [/tex]                        

We have that the abundance of X-7 is 92.5%, so the abundance of X-6 is:

[tex] 100\% = \%_{X-6} + \%_{X-7} [/tex]

[tex] \%_{X-6} = 100\% - 92.5\% [/tex]

[tex] \%_{X-6} = 7.5\% [/tex]

Hence, the atomic mass of element X is:

[tex] m_{X} = \%_{X-6}m_{X-6} + \%_{X-7}m_{X-7} [/tex]  

[tex] m_{X} = 0.075*6.015 amu + 0.925*7.016 amu = 6.941 amu [/tex]  

Therefore, the atomic mass of element X is 6.941 amu.

I hope it helps you!

The atomic mass of element X is 6.941 amu.

The atomic mass of the element X is given by:

[tex]m_x=\%x-6m_ X-6+\%x-7m_ X-7[/tex].....(1)

[tex]100\%=\%x-6+\%x-7\\\\%x-6\\\\=100\% - 92.5\%\\=7.5\%[/tex]

So, the atomic mass of element X from equation (1) is as follows :-

[tex]m_x=0.075\times6.015\ amu+0.925\times7.016\ amu\\\\=6.941\ amu[/tex]      

The atomic mass of element X is 6.941 amu.    

To know more about:-

brainly.com/question/17929887