The angles in a triangle add up to 180 degrees
- The value of x is 25
- The value of x is 73
- The value of x is 60
- The values of x, y and z are 67, 113 and 180
- The values of x, y and z are 56, 81 and 99
- The values of x, y and z are 54, 114 and 6
Exercise 1
We have:
[tex]\mathbf{x + 92 + 63 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 155 = 180}[/tex]
Subtract 155 from both sides
[tex]\mathbf{x = 25}[/tex]
Hence, the value of x is 25
Exercise 2
We have:
[tex]\mathbf{x + 20 + 87 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 107 = 180}[/tex]
Subtract 107 from both sides
[tex]\mathbf{x = 73}[/tex]
Hence, the value of x is 73
Exercise 3
We have:
[tex]\mathbf{x + 80 + 40 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 120 = 180}[/tex]
Subtract 120 from both sides
[tex]\mathbf{x = 60}[/tex]
Hence, the value of x is 60
Exercise 4
First, we calculate the value of x using:
[tex]\mathbf{x + 85 + 28 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 113 = 180}[/tex]
Subtract 113 from both sides
[tex]\mathbf{x = 67}[/tex]
x and y are on a straight line.
So, we have:
[tex]\mathbf{y = 180 - x}[/tex] --- supplementary angles
[tex]\mathbf{y = 180 - 67}[/tex]
[tex]\mathbf{y = 113}[/tex]
Calculate the value of z using:
[tex]\mathbf{z + y + 15 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{z + 113 + 15 = 180}[/tex]
[tex]\mathbf{z + 128 = 180}[/tex]
Subtract 128 from both sides
[tex]\mathbf{z = 52}[/tex]
Hence, the values of x, y and z are 67, 113 and 180
Exercise 5
First, we calculate the value of z using:
[tex]\mathbf{z + 57 + 24 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 81 = 180}[/tex]
Subtract 81 from both sides
[tex]\mathbf{z = 99}[/tex]
z and y are on a straight line.
So, we have:
[tex]\mathbf{y = 180 - z}[/tex] --- supplementary angles
[tex]\mathbf{y = 180 - 99}[/tex]
[tex]\mathbf{y = 81}[/tex]
Calculate the value of x using:
[tex]\mathbf{x + y + 43 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 81 + 43 = 180}[/tex]
[tex]\mathbf{x + 124 = 180}[/tex]
Subtract 128 from both sides
[tex]\mathbf{x = 56}[/tex]
Hence, the values of x, y and z are 56, 81 and 99
Exercise 6
First, we calculate the value of z using:
[tex]\mathbf{z + 84 + 30 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 114 = 180}[/tex]
Subtract 114 from both sides
[tex]\mathbf{z = 66}[/tex]
z and y are on a straight line.
So, we have:
[tex]\mathbf{y = 180 - z}[/tex] --- supplementary angles
[tex]\mathbf{y = 180 - 66}[/tex]
[tex]\mathbf{y = 114}[/tex]
Calculate the value of x using:
[tex]\mathbf{x + y + 12 = 180}[/tex] --- sum of angles is 180
[tex]\mathbf{x + 114 + 12 = 180}[/tex]
[tex]\mathbf{x + 126 = 180}[/tex]
Subtract 126 from both sides
[tex]\mathbf{x = 54}[/tex]
Hence, the values of x, y and z are 54, 114 and 6
Read more about angles in a triangle at:
https://brainly.com/question/22227896