Respuesta :

Answer/Step-by-step explanation:

1. 180° - (92° + 63°) = x (sum of angles in a ∆)

180° - 155° = x

25° = x

x = 25°

2. 180° - (20° + 87°) = x (sum of interior angles in a ∆)

180° - 107° = x

73° = x

x = 73°

3. 180° - (80° + 40°) = x (sum of interior angles in a ∆)

180° - 120° = x

60° = x

x = 60°

4. 180° - (28° + 85°) = x (sum of interior angles in a ∆)

180° - 113° = x

67° = x

x = 67°

180° - 67° = y (angle in a straight line)

113° = y

y = 113°

180° - (113° + 15°) = x (sum of interior angles in a ∆)

180° - 128° = z

73° = z

z = 52°

5. 180° - (24° + 57°) = z (sum of interior angles in a ∆)

180° - 81° = z

99° = z

z = 99°

180° - 99° = y (angle in a straight line)

81° = y

y = 81°

180° - (81° + 43°) = x (sum of interior angles in a ∆)

180° - 124° = x

56° = x

x = 56°

6. The figure for question is not fully displayed. Follow the same steps used in solving from question 1 to 5.

The angles in a triangle add up to 180 degrees

  • The value of x is 25
  • The value of x is 73
  • The value of x is 60
  • The values of x, y and z are 67, 113 and 180
  • The values of x, y and z are 56, 81 and 99
  • The values of x, y and z are 54, 114 and 6

Exercise 1

We have:

[tex]\mathbf{x + 92 + 63 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 155 = 180}[/tex]

Subtract 155 from both sides

[tex]\mathbf{x = 25}[/tex]

Hence, the value of x is 25

Exercise 2

We have:

[tex]\mathbf{x + 20 + 87 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 107 = 180}[/tex]

Subtract 107 from both sides

[tex]\mathbf{x = 73}[/tex]

Hence, the value of x is 73

Exercise 3

We have:

[tex]\mathbf{x + 80 + 40 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 120 = 180}[/tex]

Subtract 120 from both sides

[tex]\mathbf{x = 60}[/tex]

Hence, the value of x is 60

Exercise 4

First, we calculate the value of x using:

[tex]\mathbf{x + 85 + 28 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 113 = 180}[/tex]

Subtract 113 from both sides

[tex]\mathbf{x = 67}[/tex]

x and y are on a straight line.

So, we have:

[tex]\mathbf{y = 180 - x}[/tex] --- supplementary angles

[tex]\mathbf{y = 180 - 67}[/tex]

[tex]\mathbf{y = 113}[/tex]

Calculate the value of z using:

[tex]\mathbf{z + y + 15 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{z + 113 + 15 = 180}[/tex]

[tex]\mathbf{z + 128 = 180}[/tex]

Subtract 128 from both sides

[tex]\mathbf{z = 52}[/tex]

Hence, the values of x, y and z are 67, 113 and 180

Exercise 5

First, we calculate the value of z using:

[tex]\mathbf{z + 57 + 24 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 81 = 180}[/tex]

Subtract 81 from both sides

[tex]\mathbf{z = 99}[/tex]

z and y are on a straight line.

So, we have:

[tex]\mathbf{y = 180 - z}[/tex] --- supplementary angles

[tex]\mathbf{y = 180 - 99}[/tex]

[tex]\mathbf{y = 81}[/tex]

Calculate the value of x using:

[tex]\mathbf{x + y + 43 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 81 + 43 = 180}[/tex]

[tex]\mathbf{x + 124 = 180}[/tex]

Subtract 128 from both sides

[tex]\mathbf{x = 56}[/tex]

Hence, the values of x, y and z are 56, 81 and 99

Exercise 6

First, we calculate the value of z using:

[tex]\mathbf{z + 84 + 30 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 114 = 180}[/tex]

Subtract 114 from both sides

[tex]\mathbf{z = 66}[/tex]

z and y are on a straight line.

So, we have:

[tex]\mathbf{y = 180 - z}[/tex] --- supplementary angles

[tex]\mathbf{y = 180 - 66}[/tex]

[tex]\mathbf{y = 114}[/tex]

Calculate the value of x using:

[tex]\mathbf{x + y + 12 = 180}[/tex] --- sum of angles is 180

[tex]\mathbf{x + 114 + 12 = 180}[/tex]

[tex]\mathbf{x + 126 = 180}[/tex]

Subtract 126 from both sides

[tex]\mathbf{x = 54}[/tex]

Hence, the values of x, y and z are 54, 114 and 6

Read more about angles in a triangle at:

https://brainly.com/question/22227896