Respuesta :

Answer:

x=11

x=−5

Step-by-step explanation:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :  6*x+55-(x^2)=0

 -x2+6x+55  =0

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     -1

                     B   =    6

                     C   =   55

Accordingly,  B2  -  4AC   =

                    36 - (-220) =

                    256

Applying the quadratic formula :

              -6 ± √ 256

  x  =    ——————

                     -2

Can  √ 256 be simplified ?

Yes!   The prime factorization of  256   is

  2•2•2•2•2•2•2•2  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 256   =  √ 2•2•2•2•2•2•2•2   =2•2•2•2•√ 1   =

               ±  16 • √ 1   =

               ±  16

So now we are looking at:

          x  =  ( -6 ± 16) / -2

Two real solutions:

x =(-6+√256)/-2=3-8= -5.000

or:

x =(-6-√256)/-2=3+8= 11.000