Answer:
5.77 m
Explanation:
[tex]\theta=60^{\circ}[/tex]
[tex]\text{Opposite side}=10\ \text{m}[/tex]
Here we have to use the trigonometric formula of tan.
[tex]\tan\theta=\dfrac{\text{Opposite side}}{\text{Adjacent side}}\\\Rightarrow \tan60^{\circ}=\dfrac{10}{\text{Adjacent side}}\\\Rightarrow \text{Adjacent side}=\dfrac{10}{\tan60^{\circ}}\\\Rightarrow\text{Adjacent side}=5.77\ \text{m}[/tex]
The height of the tree is the adjacent side which is 5.77 m