Respuesta :

Step-by-step explanation:

Hey there!

The equation of a line passes through point (-2,2) is;

(y-2) = m1(X+2).............(i)

Another equation is;

y= 2/3x +2............ (ii)

From equation (ii)

y = 2/3x+2

Comparing the equation with y= mx+c, we get;

Slope(M2) = 2/3.

For perpendicular lines the condition is; M1*M2= -1

So, let's find M1 here.

[tex]m1 \times \frac{2}{3} = - 1 [/tex]

[tex]2m1 = - 3[/tex]

[tex]m1 = \frac{ - 3}{2} [/tex]

Therefore, M1= -3/2.

Putting the value of M1 in equation (i), we get;

[tex](y - 2) = - \frac{3}{2} (x + 2)[/tex]

[tex](y - 2) = - \frac{3}{2} x + 2 \times - \frac{3}{2} [/tex]

[tex](y - 2) = - \frac{3}{2} x - 3[/tex]

[tex]y = - \frac{3}{2} x - 1[/tex]

Therefore, the equation is y= -3/2x-1.

Hope it helps...