LM is a perpendicular bisector of ​NP. The length of ​LN is 12w+7, and the length of ​LP is 15w−5. What is the length of ​LN?

Respuesta :

Given:

LM is a perpendicular bisector of ​NP.

The length of ​LN is 12w+7, and the length of ​LP is 15w−5.

To find:

The length of ​LN.

Solution:

All points on a perpendicular bisector of a segment are equidistant from the end points of the segment.

Since, LM is a perpendicular bisector of ​NP, therefore L is equidistant from N and P.

[tex]LN=LP[/tex]

[tex]12w+7=15w-5[/tex]

Isolate variable terms.

[tex]7+5=15w-12w[/tex]

[tex]12=3w[/tex]

Divide both sides by 3.

[tex]\dfrac{12}{3}=w[/tex]

[tex]w=4[/tex]

Now,

[tex]LN=12w+7[/tex]

[tex]LN=12(4)+7[/tex]

[tex]LN=48+7[/tex]

[tex]LN=55[/tex]

Therefore, the length of ​LN is 55 units.