[tex]4 \times {16}^{ - (y - 2) } \times {4}^{ - y} = ({4})^{ ({3})^{ (- 2y - 1)} } \\ [/tex]
[tex]4 \times ({4})^{ ({2})^{(y - 2)} } \times {4}^{ - y} = {4}^{ - 6y - 3} [/tex]
[tex]4 \times {4}^{(2y - 4)} \times {4}^{ - y} = {4}^{ - 6y - 3} [/tex]
[tex] {4}^{1 + 2y - 4 - y} = {4}^{ - 6y - 3} \\ [/tex]
[tex] {4}^{y - 3} = {4}^{ - 6y - 3} [/tex]
Thus ;
[tex]y - 3 = - 6y - 3[/tex]
Plus sides 3
[tex]y - 3 + 3 = - 6y - 3 + 3[/tex]
[tex]y = - 6y[/tex]
Plus sides 6y
[tex]y + 6y = - 6y + 6y[/tex]
[tex]7y = 0[/tex]
Divided sides by 7
[tex] \frac{7}{7}y = \frac{0}{7} \\ [/tex]
[tex]y = 0[/tex]
_________________________________
Check :
[tex]0 - 3 = - 6(0) - 3[/tex]
[tex] - 3 = 0 - 3[/tex]
[tex] - 3 = - 3[/tex]
Thus this is the correct value.
Done.....♥️♥️♥️♥️♥️