contestada

A lighthouse is located on an island 7 miles from the closest point on a straight shoreline. If the lighthouse light
rotates clockwise at a constant rate of 5 revolutions per minute, how fast does the beam of light move across the
shore when it is 4 miles from the point on the shore closest to the island?

Respuesta :

Answer:

[tex]\frac{650\pi}{7}miles/min[/tex]

Step-by-step explanation:

We are given that

Distance of lighthouse from  closest point P=7 miles

[tex]\frac{d\theta}{dt}=5 rev /min=5\times 2\pi rad/min=10\pi rad/min[/tex]

[tex]tan\theta=\frac{Perpendicular\;side}{base}[/tex]

Using the formula

[tex]tan\theta=\frac{x}{7}[/tex]

Differentiate w.r.t time

[tex]sec^2\theta \frac{d\theta}{dt}=\frac{1}{7}\frac{dx}{dt}[/tex]

Using the formula

[tex]\frac{d(tan\theta)}{d\theta}=sec^2\theta[/tex]

[tex](1+tan^2\theta)\frac{d\theta}{dt}=\frac{1}{7}\frac{dx}{dt}[/tex]

x=4 miles

Substitute the value

[tex](1+(\frac{4}{7})^2)\times 10\pi=\frac{1}{7}\frac{dx}{dt}[/tex]

[tex](1+\frac{16}{49})70\pi=\frac{dx}{dt}[/tex]

[tex]\frac{65\times 70\pi}{49}=\frac{dx}{dt}[/tex]

[tex]\frac{dx}{dt}=\frac{650\pi}{7}miles/min[/tex]

Ver imagen lublana