Answer:
The equation in standard form is [tex]y(t) = 5.390\cdot \sin (4\pi\cdot t +0.379\pi)[/tex].
Step-by-step explanation:
We use the following trigonometric identity:
[tex]\sin (\alpha + \beta) = \sin \alpha\cdot \cos \beta + \cos \alpha \cdot \sin \beta[/tex], [tex]\forall\,\alpha,\beta\in \mathbb{R}[/tex] (Eq. 1)
If we have formula [tex]y(t) = 2\cdot \sin (4\pi\cdot t)+5\cdot \cos (4\pi\cdot t)[/tex], by direct comparison with (Eq. 1):
[tex]A\cdot \cos \phi = 2[/tex] (Eq. 2)
[tex]A\cdot \sin \phi = 5[/tex] (Eq. 3)
Where:
[tex]A[/tex] - Amplitude, dimensionless.
[tex]\phi[/tex] - Phase angle, measured in radians.
By dividing (Eq. 3) by (Eq. 2), we get that:
[tex]\tan\phi = \frac{5}{2}[/tex]
[tex]\phi = \tan^{-1}\left(\frac{5}{2} \right)[/tex]
[tex]\phi = 0.379\pi\,rad[/tex]
From (Eq. 2) we find the amplitude:
[tex]A = \frac{2}{\cos \phi}[/tex]
[tex]A = \frac{2}{\cos 0.379\pi}[/tex]
[tex]A = 5.390[/tex]
Therefore, we find that equation in standard form is:
[tex]y(t) = A\cdot \sin (\omega\cdot t +\phi)[/tex] (Eq. 4)
Where [tex]\omega[/tex] is the angular frequency, measured in radians per second.
([tex]A = 5.390[/tex], [tex]\omega = 4\pi\,\frac{rad}{s}[/tex], [tex]\phi = 0.379\pi\,rad[/tex])
[tex]y(t) = 5.390\cdot \sin (4\pi\cdot t +0.379\pi)[/tex]