Respuesta :

Answer: [tex]\dfrac{1}{20}[/tex] or 0.05

Step-by-step explanation:

Formula:

Standard error [tex]=\dfrac{\sigma}{\sqrt{ n}}[/tex]

, where [tex]\sigma[/tex] = Standard deviation

n= Sample size.

Given: Standard deviation = [tex]\dfrac12[/tex]

Sample size = 100

Standard error = [tex]\dfrac{\dfrac12}{\sqrt{100}}[/tex]

[tex]=\dfrac{1}{2\times10}=\dfrac{1}{20}=0.05[/tex]

Hence, the required Standard Error = [tex]\dfrac{1}{20}[/tex] or 0.05

The Standard Error of the sum of the 100 draws is 0.05.

It is given that,

The standard deviation of the box σ = 1/2

Number of draws n = 100

What is the standard error formula?

The standard error formula with standard deviation σ and number of trials n  is σ/√n.

So, standard error SE of the sum of 100 draws,

[tex]SE = \sigma/\sqrt{n}[/tex]

SE = [tex]\frac{1}{2} /\sqrt{100}[/tex]

SE = [tex]\frac{1}{20}[/tex] = 0.05

Therefore, the Standard Error of the sum of the 100 draws is 0.05.

To get more about standard error visit:

https://brainly.com/question/1191244