Respuesta :
Answer: [tex]\dfrac{1}{20}[/tex] or 0.05
Step-by-step explanation:
Formula:
Standard error [tex]=\dfrac{\sigma}{\sqrt{ n}}[/tex]
, where [tex]\sigma[/tex] = Standard deviation
n= Sample size.
Given: Standard deviation = [tex]\dfrac12[/tex]
Sample size = 100
Standard error = [tex]\dfrac{\dfrac12}{\sqrt{100}}[/tex]
[tex]=\dfrac{1}{2\times10}=\dfrac{1}{20}=0.05[/tex]
Hence, the required Standard Error = [tex]\dfrac{1}{20}[/tex] or 0.05
The Standard Error of the sum of the 100 draws is 0.05.
It is given that,
The standard deviation of the box σ = 1/2
Number of draws n = 100
What is the standard error formula?
The standard error formula with standard deviation σ and number of trials n is σ/√n.
So, standard error SE of the sum of 100 draws,
[tex]SE = \sigma/\sqrt{n}[/tex]
SE = [tex]\frac{1}{2} /\sqrt{100}[/tex]
SE = [tex]\frac{1}{20}[/tex] = 0.05
Therefore, the Standard Error of the sum of the 100 draws is 0.05.
To get more about standard error visit:
https://brainly.com/question/1191244