A 560-g squirrel with a surface area of falls from a 5.0-m tree to the ground. Estimate its terminal velocity. (Use a drag coefficient for a horizontal skydiver.) What will be the velocity of a 56-kg person hitting the ground, assuming no drag contribution in such a short distance

Respuesta :

Complete Question

A 560-g squirrel with a surface area of [tex]960 cm^2[/tex]falls from a 5.0-m tree to the ground. Estimate its terminal velocity. (Use a drag coefficient for a horizontal skydiver.) What will be the velocity of a 56-kg person hitting the ground, assuming no drag contribution in such a short distance

Answer:

The terminal velocity of the 560-g squirrel is [tex]v  =  9.9 \ m/s[/tex]

The velocity of the 56-kg person is [tex]v_p^2 =  9.9[/tex]

Explanation:

From the question we are told that

   The mass of the squirrel is  [tex]m_s  =560 \ g  = 0.56 \  kg[/tex]

    The  height of the fall is  [tex]s =  5 \  m[/tex]

    The drag coefficient of a skydiver is  is  [tex]C   =  1[/tex]

     The surface area is  [tex]A =  930 \  cm^2  =  0.093 \ m^2[/tex]

Generally the density of air is  [tex]\rho  =  1.21 \  kg /m^3[/tex]

Generally the terminal velocity is mathematically represented as

           [tex]v  =  \sqrt{ \frac{2 *  m  *  g}{ \rho *  C  *A } }[/tex]

=>         [tex]v  =  \sqrt{ \frac{2 *  0.56  *  9.8}{  1.21  *  1 * 0.093  } }[/tex]

=>         [tex]v  =  9.9 \ m/s[/tex]

Generally from kinematic equation

      [tex]v_p^2 =  u^2 + 2gs[/tex]

given that the person was at rest before the fall u =  0  m/s

      [tex]v_p^2 =  0+ 2* 9.8 * 5[/tex]

=>   [tex]v_p^2 =  9.9[/tex]