Respuesta :

Answer:

[tex]\red{Centroid(G)= \big(2,\frac{2}{3}\big)}[/tex]

[tex]\green{\begin{gathered}The\: coordinates \: of \\ the \: mid\:point \:of \: the \: sides \\of\:a\:triangle\:are\\ (1,1),(2,-3)\:and\:(3,4)\end{gathered}}[/tex]

[tex]\orange{\begin{gathered}x_{1}=1,y_{1}=1;\\x_{2}=2,y_{2}=-3;\\x_{3}=3,y_{3}=4\end{gathered}}[/tex]

[tex]\blue{\begin{gathered}Now,\\Centroid (G)=\big(\frac{x_{1}+x_{2}+x_{3}}{3},\frac{y_{1}+y_{2}+y_{3}}{3}\big)\end{gathered}}[/tex]

[tex]\red{\begin{gathered}=\big(\frac{1+2+3}{3},\frac{1-3+4}{3}\big)\\=\big(\frac{6}{3},\frac{2}{3}\big)\\=\big(2,\frac{2}{3}\big)\end{gathered}}[/tex]

Therefore,

[tex]\pink{Centroid(G)= \big(2,\frac{2}{3}\big)}[/tex]

Otras preguntas