Which equation represents f(x)? f(x) = RootIndex 3 StartRoot x + 6 EndRoot + 1 f(x) = RootIndex 3 StartRoot x minus 6 EndRoot + 1 f(x) = RootIndex 3 StartRoot x + 6 EndRoot minus 1 f(x) = RootIndex 3 StartRoot x minus 6 EndRoot minus 1

Respuesta :

Answer:

A.

Step-by-step explanation:

Ver imagen Ilovecheetos

The equation that represents function f(x) is (a) [tex]f(x) = \sqrt[3]{x + 6} + 1[/tex]

The original function is given as:

[tex]y = \sqrt[3]{x}[/tex]

First, the function is translated 6 units left.

The rule of this translation is:

[tex](x,y) \to (x +6,y)[/tex]

So, we have:

[tex]y = \sqrt[3]{x + 6}[/tex]

Next, the function is translated 1 unit up.

The rule of this translation is:

[tex](x,y) \to (x,y+1)[/tex]

So, we have:

[tex]y = \sqrt[3]{x + 6} + 1[/tex]

Express y as a function of x

[tex]f(x) = \sqrt[3]{x + 6} + 1[/tex]

Hence, the equation that represents f(x) is [tex]f(x) = \sqrt[3]{x + 6} + 1[/tex]

Read more about translation at:

https://brainly.com/question/5757291