Solution.
We need to find the value of x for the given expression.
[tex]\dfrac{3x-7-2}{3(9x-6)}=15[/tex]
or
[tex]\dfrac{3x-9}{3(9x-6)}=15[/tex]
Firstly, cross multiplying both sides,
[tex]3x-9=45(9x-6)[/tex]
or
[tex]3x-9=405x-270[/tex]
Taking like terms together,
[tex]3x-405x=-270+9\\\\-402x=-261\\\\x=\dfrac{261}{402}\\\\x=\dfrac{87}{134}[/tex]
So, the value of x is [tex]\dfrac{87}{134}[/tex]