Find the approximate perimeter of rectangle ABCD plotted below.
A(-2,6)
B(3,3)
D(-8,-4)
C(-3,-7)

Answer:
35 units
Step-by-step explanation:
Perimeter of rectangle ABCD =2(L + W)
L = AD or BC (we only need to calculate one of the two)
W = AB or DC. (we only need to calculate one of the two).
Distance between A(-2, 6) and D(-8, -4):
[tex] AD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Let,
[tex] A(-2, 6) = (x_1, y_1) [/tex]
[tex] D(-8, -4) = (x_2, y_2) [/tex]
[tex] AD = \sqrt{(-8 -(-2))^2 + (-4 - 6)^2} [/tex]
[tex] AD = \sqrt{(-6)^2 + (-10)^2} [/tex]
[tex] AD = \sqrt{36 + 100} = \sqrt{136} [/tex]
[tex] AD = 11.7 [/tex] (nearest tenth)
Distance between A(-2, 6) and B(3, 3):
[tex] AD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Let,
[tex] A(-2, 6) = (x_1, y_1) [/tex]
[tex] B(3, 3) = (x_2, y_2) [/tex]
[tex] AB = \sqrt{(3 -(-2))^2 + (3 - 6)^2} [/tex]
[tex] AB = \sqrt{(5)^2 + (-3)^2} [/tex]
[tex] AB = \sqrt{25 + 9} = \sqrt{34} [/tex]
[tex] AB = 5.8 [/tex] (nearest tenth)
Perimeter of rectangle ABCD =2(AD + AB)
= 2(11.7 + 5.8)
= 2(17.5)
= 35 units