Respuesta :

Given:

The legs of a right triangle are 8 cm and 12 cm.

The hypotenuse of a similar triangle is 20 cm.

To find:

The area of the larger triangle.

Solution:

According to the Pythagoras theorem,

[tex]hypotenuse^2=base^2+perpendicular^2[/tex]

The legs of a right triangle are 8 cm and 12 cm.

[tex]hypotenuse^2=(8)^2+(12)^2[/tex]

[tex]hypotenuse^2=64+144[/tex]

[tex]hypotenuse^2=208[/tex]

Taking square root on both sides.

[tex]hypotenuse=\sqrt{208}[/tex]

[tex]hypotenuse=4\sqrt{13}[/tex]

The hypotenuse of a similar triangle is 20 cm. So, scale factor is

[tex]k=\dfrac{20}{4\sqrt{13}}[/tex]

[tex]k=\dfrac{5}{\sqrt{13}}[/tex]

So, legs of larger triangle are

[tex]8\times \dfrac{5}{\sqrt{13}}=\dfrac{40}{\sqrt{13}}[/tex]

[tex]12\times \dfrac{5}{\sqrt{13}}=\dfrac{60}{\sqrt{13}}[/tex]

Area of triangle is

[tex]A=\dfrac{1}{2}\times base\times height[/tex]

[tex]A=\dfrac{1}{2}\times \dfrac{40}{\sqrt{13}}\times \dfrac{60}{\sqrt{13}}[/tex]

[tex]A=\dfrac{2400}{2(\sqrt{13})^2}[/tex]

[tex]A=\dfrac{1200}{13}[/tex]

[tex]A=92.30769[/tex]

[tex]A\approx 92.31[/tex]

Therefore, the area of the larger triangle is about 92.31 sq cm.