Respuesta :

Answer:

x = 3

Step-by-step explanation:

given:

f(x) = g(x)

f(x) = x³ - 3x² + 2

g(x) = x² - 6x + 11

find: the value of x

solution:

  • as given f(x) = g(x)
  • equate each side x³ - 3x² + 2 =  x² - 6x + 11
  • combine similar terms and equate to zero: x³ - 4x² + 6x - 9 = 0
  • solve by factoring: (x - 3) (x² - x + 3)
  • use the Zero factor principle: x - 3 = 0
  • x = 3
  • for x² - x + 3 = 0 ----this is a complex solution.

therefore, the value of x = 3

Step-by-step explanation:

[tex]

\underline{\bf{Given\::}}

Given:

\underline{\bf{To\:find\::}}

Tofind:

\underline{\bf{Explanation\::}}

Explanation:

\boxed{\bf{\frac{1}{f} =\frac{1}{v} -\frac{1}{u} }}}}

\begin{gathered}\longrightarrow\sf{\dfrac{1}{-10} =\dfrac{1}{v} -\dfrac{1}{-30} }\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\dfrac{1}{-10} +\dfrac{1}{30} }\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\dfrac{-3+1}{30} }\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\cancel{\dfrac{-2}{30} }}\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\dfrac{1}{-15} }\\\\\\\longrightarrow\sf{v=-15\:cm}\end{gathered}

−10

1

=

v

1

−30

1

v

1

=

−10

1

+

30

1

v

1

=

30

−3+1

v

1

=

30

−2

v

1

=

−15

1

⟶v=−15cm

\boxed{\bf{M \:A \:G \:N\: I \:F \:I \:C\: A\: T \:I \:O\: N :}}

MAGNIFICATION:

\begin{gathered}\mapsto\sf{m=\dfrac{Height\:of\:image\:(I)}{Height\:of\:object\:(O)} =\dfrac{Distance\:of\:image}{Distance\:of\:object} =\dfrac{v}{u} }\\\\\\\mapsto\sf{m=\cancel{\dfrac{-30}{-15}} }\\\\\\\mapsto\bf{m=2\:cm}\end{gathered}

↦m=

Heightofobject(O)

Heightofimage(I)

=

Distanceofobject

Distanceofimage

=

u

v

↦m=

−15

−30

↦m=2cm

Thus;

The magnification will be 2 cm .

[/tex]