PLEASE HELP AND SHOW HOW YOU GOT THE ANSWER PLEASEEE

Step-by-step explanation:
Hey there!
The points are; A(-2,3) and B(X,-5). And the distance between them is (√80) units.
We have;
[tex]d = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]
Keep all values.
[tex] \sqrt{80} = \sqrt{ {(x + 2)}^{2} + {( - 5 - 3)}^{2} } [/tex]
Squaring on both sides.
[tex] { (\sqrt{80}) }^{2} = ( { \sqrt{( {x + 2)}^{2} + ( { - 8)}^{2} } )}^{2} [/tex]
Simplify them.
[tex]80 = ( {x + 2)}^{2} + 64[/tex]
[tex]( {x + 2)}^{2} = 80 - 64[/tex]
[tex]( {x + 2)}^{2} = 16[/tex]
[tex]( {x + 2)}^{2} = {4}^{2} [/tex]
Cancel square from both sides.
[tex]x + 2 = 4[/tex]
X= 4-2
Therefore, X= 2.
The x-coordinate of B is 2.
Hope it helps....
(80)2=((x+2)2+(−8)2)2
Simplify them.
80 = ( {x + 2)}^{2} + 64
80=(x+2)2+64
( {x + 2)}^{2} = 80 - 64
(x+2)2=80−64
( {x + 2)}^{2} = 16(x+2)2=16
( {x + 2)}^{2} = {4}^{2}
(x+2)2=4^2
Cancel square from both sides.
x + 2 = 4
X= 4-2
Therefore, X= 2.
The x-coordinate of B is 2.