Respuesta :
Answer:
[tex]x=\frac{-9\pm3\sqrt{5} }{2}[/tex]
Step-by-step explanation:
Standard Form: ax² + bx + c = 0
Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Step 1: Write equation
x² + 9x + 9 = 0
Since we cannot factor the expression, we will have to use the quadratic formula.
Step 2: Define
a = 1
b = 9
c = 9
Step 3: Solve for x
- Substitute: [tex]x=\frac{-9\pm\sqrt{9^2-4(1)(9)} }{2(1)}[/tex]
- Evaluate: [tex]x=\frac{-9\pm\sqrt{81-36} }{2}[/tex]
- Evaluate: [tex]x=\frac{-9\pm\sqrt{45} }{2}[/tex]
- Simplify: [tex]x=\frac{-9\pm3\sqrt{5} }{2}[/tex]
Answer:
X1= -9-3[tex]\sqrt5[/tex] over 2 X2= -9+3[tex]\sqrt5[/tex] over 2 (draw a line under the -9 to the 5
and put a 2 under like a fraction
i cant get the line all the way
across on here sorry
Step by step explanation:
x= -9 [tex]\sqrt9^2 -4x1x9[/tex] Over (draw a line under that) Put all that under sq root
2 x 1 also
x= -9+ [tex]\sqrt81-36[/tex] Over 2
2
x= -9 + [tex]\sqrt45[/tex] Over 2
2
x=-9 +3[tex]\sqrt5[/tex] Over 2
2
separate solutions gives your answer above
Also ......note ..... put a line under each + sign ok I worked hard getting this all down best i can