Respuesta :

Space

Answer:

[tex]x=\frac{-9\pm3\sqrt{5} }{2}[/tex]

Step-by-step explanation:

Standard Form: ax² + bx + c = 0

Quadratic Formula: [tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Step 1: Write equation

x² + 9x + 9 = 0

Since we cannot factor the expression, we will have to use the quadratic formula.

Step 2: Define

a = 1

b = 9

c = 9

Step 3: Solve for x

  1. Substitute: [tex]x=\frac{-9\pm\sqrt{9^2-4(1)(9)} }{2(1)}[/tex]
  2. Evaluate: [tex]x=\frac{-9\pm\sqrt{81-36} }{2}[/tex]
  3. Evaluate: [tex]x=\frac{-9\pm\sqrt{45} }{2}[/tex]
  4. Simplify: [tex]x=\frac{-9\pm3\sqrt{5} }{2}[/tex]

Answer:

 X1= -9-3[tex]\sqrt5[/tex]  over 2    X2= -9+3[tex]\sqrt5[/tex] over 2  (draw a line under the -9 to the 5

                                                                         and put a 2 under like a fraction

                                                                          i cant get the line all the way

                                                                          across on here   sorry

Step by step explanation:

x= -9 [tex]\sqrt9^2 -4x1x9[/tex]    Over (draw a line under that) Put all that under sq root

             2 x 1                        also

x= -9+ [tex]\sqrt81-36[/tex]         Over 2

           2

x= -9 + [tex]\sqrt45[/tex]                 Over 2

         2

x=-9 +3[tex]\sqrt5[/tex]                   Over 2

        2

separate solutions    gives your answer above  

Also ......note ..... put a line under each  + sign  ok I worked hard getting this all down best i can