Given: cos(3x – 180°) = Negative StartFraction StartRoot 3 EndRoot Over 2 EndFraction, where 0 ≤ x < 180°

Which values represent the solutions to the equation?

{10°, 110°, 130°}
{20°, 100°, 140°}
{30°, 330°, 390°}
{60°, 300°, 420°}

Respuesta :

Answer:

A

Step-by-step explanation:

just go to calculator and solve the equation. cos(3times10degrees-180degrees). you wil get the correct answer of -squareroot3/2.

The values of x that represent the solutions to the equation [tex]cos(3x-180)=-\frac{\sqrt{3} }{2}[/tex] are 10°, 110°, 130°

What is an equation?

"It is a mathematical statement which consists of equal symbol between two algebraic expressions."

What is the formula for cos(A - B)?

[tex]cos(A-B)=cos(A)cos(B)+sin(A)sin(B)[/tex]

For given question,

We have been given an equation [tex]cos(3x-180)=-\frac{\sqrt{3} }{2}[/tex]

Using the formula of cos(A- B),

[tex]\Rightarrow cos(3x-180)=-\frac{\sqrt{3} }{2}\\\\\Rightarrow cos(3x)cos(180)+sin(3x)sin(180)=-\frac{\sqrt{3} }{2}\\\\\Rightarrow cos(3x)\times (-1)+sin(3x)\times 0=-\frac{\sqrt{3} }{2}\\\\\Rightarrow -cos(3x)+0=-\frac{\sqrt{3} }{2}\\\\\ \Rightarrow -cos(3x)=-\frac{\sqrt{3} }{2}\\\\\Rightarrow cos(3x)=\frac{\sqrt{3} }{2}[/tex]

We know, [tex]cos(\frac{\pi}{6} )=\frac{\sqrt{3} }{2}[/tex]

[tex]\Rightarrow cos(3x)=\frac{\sqrt{3} }{2}\\\\\Rightarrow cos(3x)=cos(\frac{\pi}{6} )\\\\\Rightarrow 3x=\frac{\pi}{6}~~~or~~~3x=\frac{\pi}{6}+ 2\pi[/tex]

Case 1:

[tex]\Rightarrow 3x=\frac{\pi}{6}\\\\\Rightarrow x=\frac{\pi}{18}\\\\\Rightarrow x=10^{\circ}[/tex]

Case 2:

[tex]\Rightarrow 3x=\frac{\pi}{6}+2\pi\\\\\Rightarrow 3x=30^{\circ}+360^{\circ}\\\\\Rightarrow x=130^{\circ}[/tex]

Since 0 ≤ x < 180°, so we have two values of x.

x = 10° and 130°

Also, for x = 110°,

cos(3(110°) - 180°)

= cos (330° - 180°)

= cos (150°)

= cos(180° - 30°)

= - cos(30°)

= [tex]-\frac{\sqrt{3} }{2}[/tex]

Therefore, the values of x that represent the solutions to the equation [tex]cos(3x-180)=-\frac{\sqrt{3} }{2}[/tex] are 10°, 110°, 130°

Learn more about cos(A - B) here:

https://brainly.com/question/13094664

#SPJ3