Respuesta :

Answer:

The sequence is:

[tex]\:\left\{a_{1,\:}a_2,\:a_3,\:a_4\right\}\:=\:\left\{-10,\:-23,\:-62,\:-179\right\}[/tex]

Step-by-step explanation:

Given the recursive function

[tex]a_n=3a_{n-1}+7[/tex]

As the first term is -10.

i.e.

[tex]a_1=-10[/tex]

Putting n = 2 to determine the 2nd term

[tex]a_n=3a_{n-1}+7[/tex]

[tex]a_2=3a_{2-1}+7[/tex]

[tex]a_2=3a_1+7[/tex]

    [tex]= 3(-10)+7[/tex]    ∵ [tex]a_1=-10[/tex]

     [tex]= -23[/tex]

Putting n = 3 to determine the 3rd term

[tex]a_n=3a_{n-1}+7[/tex]

[tex]a_3=3a_{3-1}+7\:\:[/tex]

[tex]a_3=3a_2+7\:\:\:\:\:[/tex]      

    [tex]= 3(-23)+7[/tex]       ∵ [tex]a_2=-23[/tex]

    [tex]= -62[/tex]

Putting n = 4 to determine the 4th term

[tex]a_n=3a_{n-1}+7[/tex]

[tex]a_4=3a_{4-1}+7[/tex]

[tex]a_4=3a_3+7\:\:\:\:\:[/tex]      

    [tex]= 3(-62)+7[/tex]       ∵ [tex]a_3=-62[/tex]

    [tex]=-179[/tex]

Therefore, the sequence is:

[tex]\:\left\{a_{1,\:}a_2,\:a_3,\:a_4\right\}\:=\:\left\{-10,\:-23,\:-62,\:-179\right\}[/tex]