Answer:
The value of x = 513
Step-by-step explanation:
Let x, y, and z be the three numbers
Given
[tex]x+y+z=855[/tex]
Assuming x be the number which is 50% more than the sum of the other two numbers.
i.e.
(150)% of (y+z) = 1.5(y+z)
y + z = x/1.5
As we know that
[tex]x + y + z = 855[/tex]
substituting y + z = x / 1.5 in the equation
[tex]x+\frac{x}{1.5}=855[/tex]
Multiply both sides by 1.5
[tex]x\cdot \:1.5+\frac{x}{1.5}\cdot \:1.5=855\cdot \:1.5[/tex]
[tex]1.5x+x=1282.5[/tex]
[tex]2.5x=1282.5[/tex]
Divide both sides by 2.5
[tex]\frac{2.5x}{2.5}=\frac{1282.5}{2.5}[/tex]
[tex]x = 513[/tex]
Therefore, the value of x = 513