Respuesta :

Answer:

The average rate of change is

Δy ÷ Δx = -20 ÷ 4

Δy/Δx = -20/4

          = -5      

Step-by-step explanation:

Given the function

[tex]h\left(x\right)\:=\:-x^2\:+\:3x\:+\:3[/tex]

Putting x = 6

[tex]h\left(6\right)\:=\:-\left(6\right)^2\:+\:3\left(6\right)\:+\:3[/tex]

         [tex]=-36+18+3[/tex]

          [tex]=-15[/tex]

Putting x = 2

[tex]h\left(2\right)\:=\:-\left(2\right)^2\:+\:3\left(2\right)\:+\:3[/tex]

         [tex]= -4 + 6 +3[/tex]

         [tex]= 5[/tex]

The change in y from 2 to 6 is

Δy = -15 - 5

    = -20

The interval from 2 to 6 has a width of

Δx = 6 - 2

     = 4

Therefore, the average rate of change is

Δy ÷ Δx = -20 ÷ 4

Δy/Δx = -20/4

          = -5