Answer:
The average rate of change is
Δy ÷ Δx = -20 ÷ 4
Δy/Δx = -20/4
= -5
Step-by-step explanation:
Given the function
[tex]h\left(x\right)\:=\:-x^2\:+\:3x\:+\:3[/tex]
Putting x = 6
[tex]h\left(6\right)\:=\:-\left(6\right)^2\:+\:3\left(6\right)\:+\:3[/tex]
[tex]=-36+18+3[/tex]
[tex]=-15[/tex]
Putting x = 2
[tex]h\left(2\right)\:=\:-\left(2\right)^2\:+\:3\left(2\right)\:+\:3[/tex]
[tex]= -4 + 6 +3[/tex]
[tex]= 5[/tex]
The change in y from 2 to 6 is
Δy = -15 - 5
= -20
The interval from 2 to 6 has a width of
Δx = 6 - 2
= 4
Therefore, the average rate of change is
Δy ÷ Δx = -20 ÷ 4
Δy/Δx = -20/4
= -5