Solve by using the quadratic formula: Simplify

Answer:
x = [tex]\frac{48 - \sqrt{1984} }{-8}[/tex]
x = [tex]\frac{48 + \sqrt{1984} }{-8}[/tex]
Step-by-step explanation:
-4[tex]x^{2}[/tex] - 48x - 20 = 0
Remember, the quadratic formula is:
x = [tex]\frac{-b +- \sqrt{b^{2} -4ac } }{2a}[/tex]
A quardatic equation in standard form is;
a[tex]x^{2}[/tex] + bx + c
Substitute in the values and solve;
[tex]\frac{48 +- \sqrt{(-48)^2 - 4 * (-4) * (-20)} }{2*(-4)}[/tex]
Simplify;
[tex]\frac{48 +-\sqrt{2304 -320} }{-8}[/tex]
x = [tex]\frac{48 +- \sqrt{1984} }{-8}[/tex]
x = [tex]\frac{48 - \sqrt{1984} }{-8}[/tex]
x = [tex]\frac{48 + \sqrt{1984} }{-8}[/tex]