Respuesta :

Answer:

Try to understand by substitute a number in a and n.

Step-by-step explanation:

For example,

a=2, n=1

a^n= 2^1= 2

[tex]\frac{1}{2}[/tex] = 0.5

2^(-1)=0.5

Step-by-step explanation:

[tex] \frac{1}{ {a}^{n} } = {a}^{ - n} [/tex]

~Math Induction

[tex] \: [/tex]

—Prove that n = 1

[tex] \frac{1}{ {a}^{1} } = {a}^{ - 1} [/tex]

[tex] \frac{1}{a} = \frac{1}{a} \to \sf proved[/tex]

[tex] \: [/tex]

—Prove that n = k

[tex] \frac{1}{{a}^{n}} = {a}^{n} [/tex]

[tex] \frac{1}{{a}^{k}} = {a}^{-k} , k \in \mathbb{R}[/tex]

[tex] \: [/tex]

—Prove that n = k + 1

[tex] \frac{1}{ {a}^{k + 1} } = {a}^{ - (k + 1)} [/tex]

[tex] \frac{1}{ {a}^{k + 1} } = {a}^{ - k} \times {a}^{ - 1} [/tex]

[tex] \frac{1}{ {a}^{k + 1} } = \frac{1}{ {a}^{k} } \times \frac{1}{ {a}^{1} } [/tex]

[tex] \frac{1}{ {a}^{k + 1} } = \frac{1}{ {a}^{k + 1} } \: \: \rm proved[/tex]

[tex] \: [/tex]

Proved that 1/a^n = a^-n