Respuesta :

Answer:

[tex]\overline{GB}[/tex] = 9

Step-by-step explanation:

The given parameters are;

The point of intersection of the perpendicular bisectors of the sides [tex]\overline{BC}[/tex], [tex]\overline{BA}[/tex], and [tex]\overline{CA}[/tex] intersect (meet) at point G

Let D represent the point of intersection of the perpendicular bisector from G to [tex]\overline{BC}[/tex], we have for ΔBGD and ΔCGD;

[tex]\overline{GD}[/tex] ≅ [tex]\overline{GD}[/tex] by reflexive property

∠GDB = ∠GDC = 90° given that [tex]\overline{GD}[/tex] is the perpendicular bisector of [tex]\overline{BC}[/tex]

Similarly, [tex]\overline{DB}[/tex] ≅ [tex]\overline{DC}[/tex], also given that  [tex]\overline{GD}[/tex] is the perpendicular bisector of [tex]\overline{BC}[/tex]

Therefore;

ΔBGD ≅ ΔCGD by Side-Angle-Side (SAS) rule of congruency

[tex]\overline{GB}[/tex] ≅ [tex]\overline{GC}[/tex]   by Congruent Parts of Congruent Triangles are Congruent, (CPCTC)

[tex]\overline{GB}[/tex] = [tex]\overline{GC}[/tex] = 9 by definition of congruency

∴ [tex]\overline{GB}[/tex] = 9.