The perpendicular bisectors of AABC intersect at point
G. Find the length of BG.
B

Answer:
[tex]\overline{GB}[/tex] = 9
Step-by-step explanation:
The given parameters are;
The point of intersection of the perpendicular bisectors of the sides [tex]\overline{BC}[/tex], [tex]\overline{BA}[/tex], and [tex]\overline{CA}[/tex] intersect (meet) at point G
Let D represent the point of intersection of the perpendicular bisector from G to [tex]\overline{BC}[/tex], we have for ΔBGD and ΔCGD;
[tex]\overline{GD}[/tex] ≅ [tex]\overline{GD}[/tex] by reflexive property
∠GDB = ∠GDC = 90° given that [tex]\overline{GD}[/tex] is the perpendicular bisector of [tex]\overline{BC}[/tex]
Similarly, [tex]\overline{DB}[/tex] ≅ [tex]\overline{DC}[/tex], also given that [tex]\overline{GD}[/tex] is the perpendicular bisector of [tex]\overline{BC}[/tex]
Therefore;
ΔBGD ≅ ΔCGD by Side-Angle-Side (SAS) rule of congruency
[tex]\overline{GB}[/tex] ≅ [tex]\overline{GC}[/tex] by Congruent Parts of Congruent Triangles are Congruent, (CPCTC)
[tex]\overline{GB}[/tex] = [tex]\overline{GC}[/tex] = 9 by definition of congruency
∴ [tex]\overline{GB}[/tex] = 9.