Simplifying Expressions
3. Which of the following expressions is the simplified form of the expression below?
(x^3+2x^2+5) - (8x^2 - 4x + 6)
A. 10x -11
B. 9x^3-- 2x^2 +11
C. 7x^2 - 2x^2 -1
D. x^3-6x^2+ 4x - 1

Respuesta :

Answer:

As

[tex]\left(x^3+2x^2+5\right)-\left(8x^2-4x+6\right)=x^3-6x^2+4x-1[/tex]

Therefore, option D is the correct answer is.

Step-by-step explanation:

Given the expression

[tex]\left(x^3+2x^2+5\right)\:-\:\left(8x^2\:-\:4x\:+\:6\right)[/tex]

solving to simplify the expression

[tex]\left(x^3+2x^2+5\right)\:-\:\left(8x^2\:-\:4x\:+\:6\right)[/tex]

[tex]=x^3+2x^2+5-\left(8x^2-4x+6\right)[/tex]        ∵  [tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]

[tex]=x^3+2x^2+5-\left(8x^2-4x+6\right)[/tex]

[tex]=x^3+2x^2+5-8x^2+4x-6[/tex]

Group like terms

[tex]=x^3+2x^2-8x^2+4x+5-6[/tex]

[tex]\mathrm{Add\:similar\:elements:}\:2x^2-8x^2=-6x^2[/tex]

[tex]=x^3-6x^2+4x+5-6[/tex]

[tex]\mathrm{Add/Subtract\:the\:numbers:}\:5-6=-1[/tex]

[tex]=x^3-6x^2+4x-1[/tex]

Therefore, the simplified form of the expression is

[tex]\left(x^3+2x^2+5\right)-\left(8x^2-4x+6\right)=x^3-6x^2+4x-1[/tex]

Therefore, option D is the correct answer is.