Respuesta :
Answer:
The sides are 24cm, 7cm, and 25cm
Step-by-step explanation:
3x+x-1+3x+1=56 <---- First we combine like terms (the 1's cancel out)
7x/7=56/7 <--- Divide by 7 to isolate the variable
x=8 <--- Now that we've solved for x we need to plug it back into each side
3(8)=24
(8)-1=7
3(8)+1=25
24+25+7=56 <---- Make sure it all adds up to 56
Hope this helps :)
Answer:
The sides of the triangle are:
- [tex]3x = 3(8)=24[/tex]
- [tex]x-1=8-1=7[/tex]
- [tex]3x+1=3(8)+1=25[/tex]
Step-by-step explanation:
- We know that the perimeter of a triangle is the sum of the length of its sides.
As the sides are given
- 3x
- x-1
- 3x+1
so the equation of the perimeter becomes
[tex]P=3x+\left(x-1\right)+\left(3x+1\right)\:[/tex]
as
- P = 56m
so
[tex]56=3x+\left(x-1\right)+\left(3x+1\right)[/tex]
[tex]3x+x+3x-1+1=56[/tex]
[tex]7x-1+1=56[/tex]
[tex]7x=56[/tex]
[tex]\frac{7x}{7}=\frac{56}{7}[/tex]
[tex]x=8[/tex]
Now finding the sides
[tex]3x = 3(8)=24[/tex]
[tex]x-1=8-1=7[/tex]
[tex]3x+1=3(8)+1=25[/tex]
Therefore, the sides of the triangle are:
- [tex]3x = 3(8)=24[/tex]
- [tex]x-1=8-1=7[/tex]
- [tex]3x+1=3(8)+1=25[/tex]