Respuesta :

Answer:

The sides are 24cm, 7cm, and 25cm

Step-by-step explanation:

3x+x-1+3x+1=56 <---- First we combine like terms (the 1's cancel out)

7x/7=56/7 <--- Divide by 7 to isolate the variable

x=8 <--- Now that we've solved for x we need to plug it back into each side

3(8)=24

(8)-1=7

3(8)+1=25

24+25+7=56 <---- Make sure it all adds up to 56

Hope this helps :)

Answer:

The sides of the triangle are:

  • [tex]3x = 3(8)=24[/tex]
  • [tex]x-1=8-1=7[/tex]
  • [tex]3x+1=3(8)+1=25[/tex]

Step-by-step explanation:

  • We know that the perimeter of a triangle is the sum of the length of its sides.

As the sides are given

  • 3x
  • x-1
  • 3x+1

so the equation of the perimeter becomes

[tex]P=3x+\left(x-1\right)+\left(3x+1\right)\:[/tex]

as

  • P = 56m

so

[tex]56=3x+\left(x-1\right)+\left(3x+1\right)[/tex]

[tex]3x+x+3x-1+1=56[/tex]

[tex]7x-1+1=56[/tex]

[tex]7x=56[/tex]

[tex]\frac{7x}{7}=\frac{56}{7}[/tex]

[tex]x=8[/tex]

Now finding the sides

[tex]3x = 3(8)=24[/tex]

[tex]x-1=8-1=7[/tex]

[tex]3x+1=3(8)+1=25[/tex]

Therefore, the sides of the triangle are:

  • [tex]3x = 3(8)=24[/tex]
  • [tex]x-1=8-1=7[/tex]
  • [tex]3x+1=3(8)+1=25[/tex]