Respuesta :
Answer:
- [tex]\mathrm{Domain\:of\:}\:-5x-1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
- [tex]\mathrm{Range\:of\:}-5x-1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
Step-by-step explanation:
Finding the domain:
The domain of a function is the set of possible input values for which the function is real and defined.
Given the function
[tex]y=-5x-1[/tex]
The function has no undefined points nor domain constraints. Hence, the domain is
[tex]-\infty \:<x<\infty \:[/tex]
i.e.
[tex]\mathrm{Domain\:of\:}\:-5x-1\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
Finding the range:
The range of a function is the set of possible output values (dependent variable y values) for which a function is defined.
The range of polynomials with odd degree is all the real numbers.
Hence, the domain is
[tex]-\infty \:<y<\infty \:[/tex]
i.e.
[tex]\mathrm{Range\:of\:}-5x-1:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]