Respuesta :
Step-by-step explanation:
b is the answer , z-score normalization
Normalization is applied to data values in other to ensure that the data scales well, such that data values conforms to a certain range. The output of the various normalization techniques are given below ;
Given the data:
- 200, 300, 400, 600, 1000
1.)
Min - Max normalization :
- [tex]\frac{value - min}{max - min} [/tex]
- Min = minimum = 200
- Max = maximum = 1000
Value = 200 :
[tex]\frac{200 - 200}{1000 - 200} = 0[/tex]
Value = 300 :
[tex]\frac{300 - 200}{1000 - 200} = 0.125[/tex]
Value = 400 :
[tex]\frac{400 - 200}{1000 - 200} = 0.25[/tex]
Value = 600 :
[tex]\frac{600 - 200}{1000 - 200} = 0.5[/tex]
Value = 1000 :
[tex]\frac{1000 - 200}{1000 - 200} = 1[/tex]
Normalized values = (0, 0.125, 0.25, 0.5, 1)
2.)
Zscore normalization :
- [tex]\frac{value - μ}{σ} [/tex]
Using a calculator :
- Mean, μ = 500
- Standard deviation = 316.227
Value = 200 :
[tex]\frac{200 - 500}{316.227} = -0.949[/tex]
Value = 300 :
[tex]\frac{300 - 500}{316.227} = -0.632[/tex]
Value = 400 :
[tex]\frac{400 - 500}{316.227} = -0.316[/tex]
Value = 600 :
[tex]\frac{600 - 500}{316.227} = 0.316[/tex]
Value = 1000 :
[tex]\frac{1000 - 500}{316.227} = 1.581[/tex]
Normalized values = (-0.949, -0.632, -0.316, 0.316, 1.581)
3.)
Decimal Scaling :
- Maximum value = 1000
- Hence, we can divide our values by 10000
200 / 10000 = 0.02
300/1000 = 0.03
400/1000 = 0.04
600/1000 = 0.06
1000/1000 = 0.1
Hence, the Normalized values (0.02, 0.03, 0.04, 0.06, 0.1)
Learn more : https://brainly.com/question/19132215