Determine if the Mean Value Theorem for Integrals applies to the function f(x) = 3 - x2 on the interval the closed interval from 0 to the square root of 3 . If so, find the x-coordinates of the point(s) guaranteed by the theorem

Respuesta :

Answer: Yes, Mean Value Theorem for Integrals applies for the function [tex]f(x)=3-x^{2}[/tex] and values of x are 1 and -1

Step-by-step explanation: Mean Value Theorem for Integrals states that if a function is continuous on a closed interval, there is a value c on the interval such that

[tex]f(c)=\frac{1}{b-a} \int\limits^b_a {f(x)} \, dx[/tex]

where a and b are the closed interval given

As the graph of [tex]f(x)=3-x^{2}[/tex] shown below, the function is continuous on the interval [0,[tex]\sqrt{3}[/tex]], so the theorem applies.

To find the x-coordinates, first determine value of f(c) at [0,[tex]\sqrt{3}[/tex]]:

[tex]f(c)=\frac{1}{\sqrt{3} -0} \int\limits {3-\sqrt{x^{2}} } \, dx[/tex]

[tex]f(c)=\frac{1}{\sqrt{3}}[3x-\frac{x^{3}}{3} ][/tex]

[tex]f(c)=\frac{1}{\sqrt{3}}[ 3\sqrt{3}-\frac{(\sqrt{3})^{3}}{3} ][/tex]

[tex]f(c)=\frac{1}{\sqrt{3} } [2\sqrt{3} ][/tex]

f(c) = 2

The x-coordinates will be:

[tex]f(x)=3-x^{2}[/tex]

[tex]2=3-x^{2}[/tex]

[tex]x^{2}=1[/tex]

[tex]x=\sqrt{1}[/tex]

x = ±1

The values for x guaranteed by the Mean Value Theorem are +1 and -1.

Ver imagen cristoshiwa