Respuesta :

Step-by-step explanation:

[tex] \dfrac{a}{b+1} - \dfrac{a}{(b+1)^2} = [/tex]

[tex] = \dfrac{b + 1}{b + 1} \times \dfrac{a}{b+1} - \dfrac{a}{(b+1)^2} [/tex]

[tex] = \dfrac{a(b + 1)}{(b+1)^2} - \dfrac{a}{(b+1)^2} [/tex]

[tex] = \dfrac{ab + a}{(b+1)^2} - \dfrac{a}{(b+1)^2} [/tex]

[tex] = \dfrac{ab + a - a}{(b+1)^2} [/tex]

[tex] = \dfrac{ab}{(b+1)^2} [/tex]

Answer:

Proof

Step-by-step explanation:

[tex] \frac{a}{(b + 1)} - \frac{a}{ {(b + 1)}^{2} } [/tex]

Multiply the first fraction (the numerator and the denominator) by

[tex](b + 1) \\[/tex]

In order to get common denominators for both fractions

[tex] \frac{a(b + 1)}{ {(b + 1)}^{2} } - \frac{a}{ {(b + 1)}^{2} } [/tex]

Then expand the first fraction's numerator and subtract fractions to get your answer

[tex] \frac{ab + a}{ {(b + 1)}^{2} } - \frac{a}{ {(b + 1)}^{2} } = \frac{ab}{ {(b + 1)}^{2} } [/tex]